Math

C.

Exercise Set

Sourcept Reinforcement Classify each of the following statements as either true or false.

- 1. The quadratic formula can be used to solve any quadratic equation. True
- 2. The steps used to derive the quadratic formula are the same as those used when solving by completing the square. True
- The quadratic formula does not work if solutions are imaginary numbers. False
- 4. Solving by factoring is always slower than using the quadratic formula. False
- 5. A quadratic equation can have as many as four solutions.
- 6. It is possible for a quadratic equation to have no realnumber solutions. True

Solve.

8.2

7. $2x^2 + 3x - 5 = 0$ $-\frac{5}{2}$, 1 **8.** $3x^2 - 7x + 2 = 0$ $\frac{1}{3}$, 2 9. $u^2 + 2u - 4 = 0$ $-1 \pm \sqrt{5}$ 10. $u^2 - 2u - 2 = 0$ $1 \pm \sqrt{3}$ 11. $3p^2 = 18p - 6 \ 3 \pm \sqrt{7}$ 12. $3u^2 = 8u - 5 \ 1, \frac{5}{3}$ **13.** $h^2 + 4 = 6h \ 3 \pm \sqrt{5}$ **14.** $t^2 + 4t = 1 \ -2 \pm \sqrt{5}$ 15. $x^{2} = 3x + 5\frac{3}{2} \pm \frac{\sqrt{29}}{2}$ 16. $x^{2} + 5x = -3 - \frac{5}{2} \pm \frac{\sqrt{13}}{2}$ 17. 3t(t+2) = 1 $-1 \pm \frac{2\sqrt{3}}{3}$ 18. 2t(t+2) = 1 $-1 \pm \frac{\sqrt{6}}{2}$ 19. $\frac{1}{x^{2}} - 3 = \frac{8}{x}$ \therefore 20. $\frac{9}{x} - 2 = \frac{5}{x^{2}}$ \therefore Find **21.** $t^2 + 10 = 6t$ $3 \pm i$ **22.** $t^2 + 10t + 26 = 0$ **23.** $x^2 + 4x + 6 = 0$ $-2 \pm \sqrt{2i}$ **24.** $x^2 + 11 = 6x \frac{-5 \pm i}{3 \pm \sqrt{2i}}$ **25.** $12t^2 + 17t = 40 -\frac{8}{3}, \frac{5}{4}$ **26.** $15t^2 + 7t = 2$ $-\frac{2}{3}, \frac{1}{5}$ **27.** $25x^2 - 20x + 4 = 0$ $29. 7x(x+2) + 5 = 3x(x+1) -\frac{11}{8} \pm \frac{\sqrt{41}}{8}$ **28.** $36x^2 + 84x + 49 = 0$ $-\frac{7}{6}$ **30.** $5x(x-1) - 7 = 4x(x-2) - \frac{3}{2} \pm \frac{\sqrt{37}}{2}$ **31.** 14(x-4) - (x+2) = (x+2)(x-4)5,10 **32.** 11(x-2) + (x-5) = (x+2)(x-6) 1, 15

MyMathLab

FOR EXTRA HELP

$$33. 5x^{2} = 13x + 17^{\frac{13}{10}} \pm \frac{\sqrt{509}}{10}$$
$$34. 25x = 3x^{2} + 28 \quad \frac{4}{3}, 7$$

35.
$$x(x-3) = x - 9$$
 $2 \pm \sqrt{5i}$
36. $x(x-1) = 2x - 7$ $\frac{3}{2} \pm \frac{\sqrt{19}}{2}$

- **37.** $x^3 8 = 0$ (*Hint*: Factor the difference of cubes. Then use the quadratic formula.) $2, -1 \pm \sqrt{3i}$
- **38.** $x^3 + 1 = 0$ $-1, \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ **39.** Let $g(x) = 4x^2 2x 3$. Find x such that g(x) = 0. $\frac{1}{4} \pm \frac{\sqrt{13}}{4}$ **40.** Let $f(x) = 6x^{24} 7x^4 20$. Find x such that f(x) = 0. $-\frac{4}{3}, \frac{5}{2}$

41. Let

$$g(x) = \frac{2}{x} + \frac{2}{x+3}$$

Find all x for which g(x) = 1. -2, 3

42. Let

$$f(x) = \frac{7}{x} + \frac{7}{x+4}.$$

Find all x for which f(x) = 1. $5 \pm \sqrt{53}$

$$F(x) = \frac{x+3}{x}$$
 and $G(x) = \frac{x-4}{3}$.

Find all x for which F(x) = G(x). $\frac{7}{2} \pm \frac{\sqrt{85}}{2}$

44. Let

$$f(x) = \frac{3-x}{4} \text{ and } g(x) = \frac{1}{4x}.$$

Find all x for which $f(x) = g(x)$. $\frac{3}{2} \pm \frac{\sqrt{5}}{2}$

Solve. Use a calculator to approximate, to three decimal places, the solutions as rational numbers.

45.
$$x^2 + 4x - 7 = 0$$

 $-5.317, 1.317$
46. $x^2 + 6x + 4 = 0$
 $-5.236, -0.764$
47. $x^2 - 6x + 4 = 0$
 $0.764, 5.236$
48. $x^2 - 4x + 1 = 0$
 $0.268, 3.732$
49. $2x^2 - 3x - 7 = 0$
 $-1.266, 2.766$
50. $3x^2 - 3x - 2 = 0$
 $-0.457, 1.457$

tw 51. Are there any equations that can be solved by the quadratic formula but not by completing the square? Why or why not?

· Answers to Exercises 19 and 20 are on p. IA-17.

52. Suppose you are solving a quadratic equation with no constant term (c = 0). Would you use factoring or the quadratic formula to solve? Why?

SKILL REVIEW

To prepare for Section 8.3, review multiplying and simplifying radical expressions and complex-number expressions (Sections 7.3, 7.5, and 7.8).

Multiply and simplify.

53. (x - 2i)(x + 2i) [7.8] $x^2 + 4$ **54.** $(x - 6\sqrt{5})(x + 6\sqrt{5})$ [7.5] $x^2 - 180$ **55.** $(x - (2 - \sqrt{7}))(x - (2 + \sqrt{7}))$ [7.5] $x^2 - 4x - 3$ **56.** (x - (-3 + 5i))(x - (-3 - 5i)) [7.8] $x^2 + 6x + 34$ Simplify.

57.
$$\frac{-6 \pm \sqrt{(-4)^2 - 4(2)(2)}}{2(2)} [7.3] -\frac{3}{2}$$

58.
$$\frac{-(-1) \pm \sqrt{(6)^2 - 4(3)(5)}}{2(3)} [7.8] -\frac{1}{6} \pm \frac{\sqrt{6}}{3}i$$

SYNTHESIS

- **11 59.** Explain how you could use the quadratic formula to help factor a quadratic polynomial.
- **11** 60. If a < 0 and $ax^2 + bx + c = 0$, then -a is positive and the equivalent equation, $-ax^2 bx c = 0$, can be solved using the quadratic formula.
 - a) Find this solution, replacing a, b, and c in the formula with -a, -b, and -c from the equation.
 - **b**) How does the result of part (a) indicate that the quadratic formula "works" regardless of the sign of *a*?

For Exercises 61-63, let

$$f(x) = \frac{x^2}{x-2} + 1$$
 and $g(x) = \frac{4x-2}{x-2} + \frac{x+4}{2}$.

61. Find the *x*-intercepts of the graph of f. (-2, 0), (1, 0)

62. Find the x-intercepts of the graph of g. 63. Find all x for which f(x) = g(x). $4 - 2\sqrt{2}, 4 + 2\sqrt{2}$ Solve. Approximate the solutions to three decimal places. $64. x^2 - 0.75x - 0.5 = 0 - 0.425, 1.175$

65. $z^2 + 0.84z - 0.4 = 0 - 1.179, 0.339$

- Solve. **66.** $(1 + \sqrt{3})x^2 - (3 + 2\sqrt{3})x + 3 = 0$ **67.** $\sqrt{2}x^2 + 5x + \sqrt{2} = 0$ $\frac{-5\sqrt{2}}{4} \pm \frac{\sqrt{34}}{4}$ **68.** $ix^2 - 2x + 1 = 0$ $-i \pm i\sqrt{1 - i}$
- 69. One solution of $kx^2 + 3x k = 0$ is -2. Find the other. $\frac{1}{2}$
- **70.** Can a graph be used to solve *any* quadratic equation? Why or why not?
- 71. Solve Example 2 graphically and compare with the algebraic solution. Which method is faster? Which method is more precise?
- **72.** Solve Example 4 graphically and compare with the algebraic solution. Which method is faster? Which method is more precise?

Try Exercise Answers: Section 8.2
7.
$$-\frac{5}{2}$$
, 1 35. $2 \pm \sqrt{5}i$ 39. $\frac{1}{4} \pm \frac{\sqrt{13}}{4}$ 43. $\frac{7}{2} \pm \frac{\sqrt{85}}{2}$
45. -5.317 , 1.317

8.3

Studying Solutions of Quadratic Equations

THE DISCRIMINANT

- The Discriminant
- Writing Equations from Solutions

It is sometimes enough to know what *type* of number a solution will be, without actually solving the equation. Suppose we want to know if $4x^2 + 7x - 15 = 0$ has rational solutions (and thus can be solved by factoring). Using the quadratic formula, we would have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 4 \cdot (-15)}}{2 \cdot 4}$$